《等量代换和简单的几何证明复习课》教学设计
一、教学目标
(一)知识与技能
体会一些数学思想方法在解决问题中的作用,灵活掌握一些数学思想和数学方法,会灵活运用这些方法解决生活中的问题。
(二)过程与方法
引导学生经历并理解推理的过程,进一步发展解决问题的能力。
(三)情感态度和价值观
感受数学的魅力,增强数学学习的兴趣。
二、教学重难点
引导学生经历并理解推理的过程,进一步发展解决问题的能力。
三、教学准备
多媒体课件。
四、教学过程
(一)复习引入
上一节课我们学习了什么内容?(预设:找规律和列表推理,课件出示相关内容)今天这节课,一起来学习例3和例4,继续享受由数学思考带来的“思维盛宴”。
(二)自主探索
1.教学例3。
课件出示题目:△、□、○、☆、◎各代表一个数。
(1)已知△+□=24,△=□+□+□。求△和□的值。
教师:你能解决这道题吗?请在草稿本上试一试。
学生练习,指名回答。
预设:△=18,□=6。
教师追问:你是怎么想的?
预设:因为一个△等于3个□,可以把第一个算式中的△换成三个□。这样,第一个算式就转化成了4个□相加等于24,□就等于6。接下来求△,用6×3=18就行了。
教师:大家听懂这种方法了吗?在解决问题的过程中,最重要的是哪一步?(预设:把第一个算式中的△换成3个□)这样的方法就叫做等量代换。同桌之间互相说一说。
该怎样用数学的方法表示这一过程呢?我们一起来看(课件出示)。
【设计意图】学生有能力独立解决这一问题,应让学生把代换的过程(思路)讲清楚,通过教师的提问理解关键步骤是该环节的教学重点。在解题过程的表述上,充分发挥教师的引领作用,通过多媒体课件逐步呈现过程,使学生体会数学证明的方法,感受数学语言的严谨性。
我们再来看第(2)小题:已知○+☆=160,◎+☆=160。○是否等于◎?
想一想,你的结论是什么?(相等)能用什么方法证明你的结论呢?
预设:两个等式中都有☆,只要把☆分别减去就可以知道○和◎是相等的。
教师追问:把☆分别减去的依据是什么?
预设:等式的性质:在等式的左右两边同时减去一个数,两边依然相等。
教师:你能用第(1)题的方法表述这个过程吗?
学生练习,教师强调每一步都要写清楚依据。
交流汇报,逐步引导得出:
教师小结:在解决第(1)小题的过程中,我们用到了什么数学思想?(等量代换)第(2)小题则是根据什么?(等式的性质)将解题过程用这样的形式表示出来,采用的是数学证明的方法。
【设计意图】表述的逻辑性和严谨性是该环节的教学重点,在学生已经得出结论的基础上,逐步引导他们用规范的数学语言加以表述,充分体会数学证明的方法和逻辑推理的思想。
2.教学例4。
教师:运用数学证明的方法,还可以解决几何知识中的推理问题。(课件出示题目)
什么是平角?平角与直线有什么区别?谁来说一说?
预设:①平角是个角,而直线是条“线”;②平角可度量,1平角=180度;直线不可度量;③最明显的区别是:平角有一个顶点和两条边,而直线没有。
如图,两条直线相交于点O。
(1)每相邻两个角可以组成一个平角,一共能组成几个平角?
教师:谁来说说对题意的理解?
预设:每相邻两个角可以组成一个平角,在图中有四组角是相邻的。
预设:平角的两边在一条直线上,在同一条直线的两旁可以找到两个以O为顶点的平角。
教师:那么,我们可以找到几个平角呢?(4个)它们分别是由哪两个相邻的角组成的?(∠1和∠2,∠2和∠3,∠3和∠4,∠4和∠1)
课件出示第(2)题:你能推出∠1=∠3吗?
学生独立思考,互相交流后汇报思路。
预设:∠1和∠2可以组成平角,∠2和∠3可以组成平角,在两个平角中同时减去∠2,就可以得出∠1=∠3。
预设:还可以这样想,∠1和∠4可以组成平角,∠3和∠4可以组成平角,在两个平角中同时减去∠4,可以得出∠1=∠3。
教师:这两种方法中都用到了同时减去同一个角,依据是什么?(等式的性质)你能用例3中学到的方法表示这个过程吗?
学生练习,教师巡回指导。
展示作业,逐步归纳得出:
你能用同样的方法推出∠2=∠4吗?
学生练习,反馈讲评,突出强调表述的逻辑性和严密性。
【设计意图】题目中平角的概念和平角与直线的区别这两个问题是新知的生长点,教师在实际教学中应使学生理解到位。第(1)小题既可以由题意“每相邻两个角可以组成一个平角”出发,也可以从平角的特征考虑加以解决。第(2)小题的解决根据第(1)小题的结论,同时例3中的第(2)小题为本题的推理提供了知识基础,这个教学环节以学生自主探索为主,引导学生充分经历并理解推理的过程。
(三)课堂练习
1.课件出示教材第104页练习二十二第9题。
第(1)小题可采用等式的性质,将三个等式的两边分别相加,求出○+□+△=100,然后依次求出结果;第(2)小题先根据上面两式求出○和□,然后代入第三式求值。
2.课件出示教材第104页练习二十二第10题。
该题实际上是“三角形的外角等于与它不相邻的两个内角的和”的知识,是例4的配套练习,利用三角形的内角和等于180°和平角的概念进行推理。
【设计意图】针对性的练习设计,强化了等量代换、等式的性质、数学证明的方法和几何证明等知识,在解决问题的过程中使学生直观感受数学推理的应用价值。
(四)课堂总结
这节课学习了什么?你有什么收获?在数学证明中需要特别注意的是什么?
【《等量代换和简单的几何证明复习课》教学设计 】相关文章:
- 上一篇:《邮票中的数学问题》教学设计
- 下一篇:《统计与概率复习课》教学设计
相关数学教学设计推荐
- [教学设计]|六年级数学上册教学设计(苏教版)
- [教学设计]|人教版六年级数学上册《圆环的面积》教学设计与反思
- [教学设计]|人教版六年级上册数学《百分数的认识》教学设计与反思...
- [教学设计]|北师大版六年级《比赛场次》数学教案
- [教学设计]|人教版六年级上册数学教案
- [教学设计]|苏教版六年级数学上册《分数四则混合运算》评课稿
- [教学设计]|新人教版小学六年级下册数学《鸽巢问题一》教学设计优...
- [教学设计]|新人教版小学六年级下册数学《圆柱的认识》教学设计优...
- [教学设计]|人教版数学六年级上册《扇形》教案与反思
- [教学设计]|新苏教版小学六年级下册数学“制订旅游计划”教学设计...
精美图文
精品推荐
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:二次根式的概念和性质@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的整数根@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的应用@_@课后练习二(含详解
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的判别式@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习二(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习一(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形有关的综合问题2@_@课后练习二
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的公共根@_@课后练习一(含详
- 61、2020同步人A数学必修第一册新教材章末综合测评(五) 三角函数 Word版含解析
- 58、2020同步人A数学必修第一册新教材章末综合测评(二) 一元二次函数、方程和不等式 Word版含解析
- 人教版二年级下册数学
- 《计算器》小学数学名师优质课观摩视频-刘伟男
- 《解决问题的策略》小学数学六年级名师优质课观摩视频-特级教师翟运胜
- 小升初数学择校难题三角形面积转换成比例讲解及练习优司芙品数学19年6月12
- 《分数典型习题讲评课》小学数学五年级名师优质课观摩视频-特级教师翟运胜
- 《分苹果》小学数学大赛课优质课观摩视频-一等奖教学视频及报告-潘小明
- 北师大版数学七上-1.4《从三个方向看物体形状》课堂教学视频实录-郝志平
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 北师大版数学七上-2.1《有理数》课堂教学视频实录-闵礼刚
- 019秋全套小学单元测试六年级上语文数学英语科学全套 6年级上册部编版同步训练期中期末试卷考试题複习题练习簿习题