应用题思路教法举隅
解答应用题的思考方法常常有好多种,各种方法都可以帮助学生找到解题的途径,即解题思路。现结合教 学实践,谈谈应用解题思路教学的七种方法:
一、用图解法显示解题思路
引导学生把应用题中数量关系,通过图示显示解题的思路。例如,一辆客车从甲地到乙地需行4个小时,一 辆货车从乙地到甲地需行5小时。两车同时由两地相向开出,3小时后两车相距50千米,求甲乙两地的距离?
两车行1小时各行全程的3/4和3/5,这一点学生是很容易想到的。但50千米与这两个分率有什么联系,比较 抽象。教学时,引导学生画出线段示意图:
(附图 {图})
从图中可以清楚地看出,50千米在3/4和3/5相互重叠的地方,引导学生变换观察的角度,将会有不同的解 题思路。
(1)从客车这边看:50千米正好与3/4和“1-3/5=2/5”的差相对应。列式:50÷[3/4-(1-3/5)]
(2)从货车这边看:50千米正好与3/5和“1-3/4=1/4”的差相对应。列式:50÷[3/5-(1-3/4)]
(3)从两头往中间看:50千米又是被夹在中间的一段。列式:50÷[1-(1-3/4)-(1-3/5)]
(4)从整体看,50千米就是3/4与3/5相互重叠的部分。列式:50÷(3/4+3/5-1)
二、用演示操作法揭示解题思路
通过直观教具(包括幻灯片)的演示,以及引导学生操作学具,突出解题关键,发现解题的线索,揭示解 题的思路。例如,有一列长140米的火车,以每小时9千米的速度,通过一座610米的大桥,需要几分钟?
教学时,教师引导学生用实物来操作演示,将文具盒当大桥,用笔当火车,可以在课桌上模仿火车过桥的 情景。先将笔尖靠紧文具盒的一端,然后慢慢推进,直到笔尾离文具盒。通过操作,同学们很清楚地看出,火 车从车头上桥到车尾离桥,所行的路程等于桥长与车长的和。列式:(610+140)÷(9000÷60)
三、用假设法寻求解题思路
将某种现象或关系,假设一个主观上所需要的条件,然后从事实与假设之间的矛盾中,寻求正确的答案。 例如,小明到商店买4本练习本和3支铅笔,共用去0.65元,每本练习本比每支铅笔贵0.04元,求每本练习本和 每支铅笔的价钱?
教学时,引导学生用一种物品替换另一种物品,使数量关系单一化。假设小明买的同一种文具(练习本或 铅笔),那么实际买的文具所付的金额就有差异,得到买同一种文具的数量和总价就可以求出单价。
引导学生假设3支铅笔换成3本练习本,小明就应多付0.04×3=0.12(元),求每本练习本的价钱,列式为(0 .65+0.12)÷(4+3);如果把4本练习换成4支铅笔,小明应少付0.04×4=0.16(元),求出每支铅笔的价钱, 列式为(0.65-0.16)÷(4+3)
四、用逆推法探求解题思路
对于某些特殊结构的应用题作反向思考,采取相逆的运算,探索解题的思路。例如,3个同学分练习本,甲 得到的本数比总数1/2少1本,乙得到的本数比其余的1/2多1本,丙得到8本,共有练习本多少本?
教学时,先让学生按照题意列出事情发展的过程
(→)
┌───┐ ┌─────────┐ ┌──────┐
│ 本子 │──→│甲得到总数的1/2少 │──→│ 余下的 │──→
│ 总数 │←──│ 1本 │←──│ 本数 │←──
└───┘ └─────────┘ └──────┘
┌───────┐ ┌─────┐
│乙得到余下的 │──→│丙得到8本 │
│1/2多1本 │←──│ │
└───────┘ └─────┘
然后列出逆推思路图(←)从而得到解题思路:
(1)根据丙得到的本数和乙得到余下的1/2多1本,求出余下的本数,列式:(8+1)÷1/2=18(本)
(2)根据余下的本数和甲得到总数的1/2少1本,求出总数,列式:(18-1)÷1/2
五、用变更法诱导解题思路
对应用题中的条件、结论或问题的叙述方式做些变更,也就是换另一种说法来说题意,往往能使原问题化 繁为简,化难为易,从另一个方面诱导出解题思路。例如,一辆客车,从甲地到乙地需行12小时,一辆货车从 乙地到甲地需行15小时,现在两车同时相向而行,途中货车因故停留3小时,货车出发后几小时与客车相遇?
分析这道题时,引导学生把题中的“货车停留3小时”变更为“客车先出发3小时”,也就是客车行了全程 的1/12×3=1/4时,货车才出发,这道题的解题思路就一目了然了。列式:(1-1/12×3)÷(1/12+1/15)
六、用类比法启发解题思路
从要解决的问题联想到与它类似的一个熟悉的问题,用熟悉问题的解题思路,解决所要解决的问题。例如 ,客车两车从两站相对开出18/5小时后,在途中相遇,客车行全程要6小时,货车行全程要几小时?
这道题粗看一下,像相遇问题,但仔细分析一下,会发现此题既不知两站之间的距离,也不知客车的速度 ,如果用相遇问题的方法来解答,显然是行不通的。
教学时,引导学生换一个角度去看看,不难发现它与所学过的工程问题类似。
【应用题思路教法举隅】相关文章:
- 上一篇:授准、教实、练活
- 下一篇:加强训练提高数学能力
相关数学数学论文推荐
精美图文
网友关注
- []|小学二年级数学期末复习题及答案
- []|二年级数学混合运算和两步应用题试卷
- []|小学数学二年级上学期数学中段知识抽查试题
- []|小学二年级奥数练习及答案
- []|小学二年级数学拓展题
- []|新课标人教版二年级下数学期末测试卷
- []|小学二年级数学上学期测试题
- []|人教版二年级下册数学第二单元试卷
- []|小学二年级上册数学练习题二十八套
- []|2011年二年级下册应用题
精品推荐
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:二次根式的概念和性质@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的整数根@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的应用@_@课后练习二(含详解
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的判别式@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习二(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习一(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形有关的综合问题2@_@课后练习二
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的公共根@_@课后练习一(含详
- 61、2020同步人A数学必修第一册新教材章末综合测评(五) 三角函数 Word版含解析
- 58、2020同步人A数学必修第一册新教材章末综合测评(二) 一元二次函数、方程和不等式 Word版含解析
- 《钉子板上的多边形》小学数学名师优质课观摩视频-特级教师翟运胜经典课例
- 小升初试卷模拟卷试题人教版 小升初真题卷语文数学英语全套3本 小学生毕业总複习资料 小升初模拟卷 六年级小升初试卷真题
- 人教版七年级数学下册第五章5.1.1《相交线》_高清
- 冀教版小学数学二年级下册第二单元《租船问题》
- 《和的奇偶性》小学数学五年级优质课观摩视频-特级教师张冬梅-第十八届小学数学课堂教学观摩课
- 019秋全套小学单元测试六年级上语文数学英语科学全套 6年级上册部编版同步训练期中期末试卷考试题複习题练习簿习题
- 小升初数学:经典小升初几何问题,怎么求图中4个叶子阴影面积
- 苏科版八年级数学下册7.2《统计图的选用》
- 北师大版数学七上-1.4《从三个方向看物体形状》课堂教学视频实录-李爱华
- 冀教版小学数学二年级下册第二单元《有余数除法的竖式计算》