高三数学知识点:解析几何专题
天津市第四十二中学 张鼎言
进一步,把问题用图形表示出来,需求直线x-2y=m所与求轨迹的切点。
-,用判别式△=0→m=p,得切点Q(3p,p)
点Q到直线的x-2y=0距离是-,即-=-→p=2
(四)直线过圆锥曲线的焦点
复习导引:高考题解析部分大量的问题是直线与圆锥曲线相交,我们首先要抓住直线是否过圆锥曲线焦点?这部分第1至第5题阐明了直线过焦点的处理方法,第6题注又从反面说明在什么条件下才采用过焦点的方法。第4题引出了在什么条件下用两式相减可以简化推导过程。
1. 已知椭圆-+-=1的左、右焦点分别为F1,F2。过F1的直线交椭圆于B,D两点,过F2的直线交椭圆于A,C两点,且AC⊥BD,垂足为P。
(Ⅰ)设P点的坐标为(x0,y0),证明:-+-
(Ⅱ)求四边形ABCD的面积的最小值。
解(1)点P在以|F1F2|为直径的圆上,∴x02+y02=1,
-+--+-
=-=-1
解:分析(2)SABCD=S△ABC+S△ADC
=-|AC||BP|+-|AC||DP|
=-|AC||BD|
下面是如何求出|AC|=?|BD|=?
由椭圆第二定义:
|BD|=|BF2|+|DF2|
又右准线方程为x=-=3,e=-=-=-
|BF2|=(3-xB)e,|DF2|
=(3-xD)e
|BD|=[6-(xB+xD)■
过F2的直线lBD
y=k(x-1),k≠0,k存在。
-
|BD|=-■
=-
同理可求得:
|AC|=-
S=-
(3k2+2)+(2k2+3)2-
5(k2+1)2-
--■
SABCD-,当3k2+2=2k2+3,k2=1,k=±1。
当k不存在,可设BD⊥x轴,这时kAC=0
SABCD=-2-■=4-
∴(SABCD)min=-,此时k=±1
注:本题第(2)用两点间距离公式求|AC|、|BD|也可行,计算量稍大,如果直线过圆锥曲线焦点,就要考虑椭圆或双曲线第二定义。
【高三数学知识点:解析几何专题】相关文章:
- 上一篇:高三数学知识点:快速提高成绩
- 下一篇:高三数学知识点:山东省高考考试说明
相关数学考前复习推荐
精美图文
网友关注
精品推荐
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:二次根式的概念和性质@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的整数根@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的应用@_@课后练习二(含详解
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的判别式@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习二(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习一(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形有关的综合问题2@_@课后练习二
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的公共根@_@课后练习一(含详
- 61、2020同步人A数学必修第一册新教材章末综合测评(五) 三角函数 Word版含解析
- 58、2020同步人A数学必修第一册新教材章末综合测评(二) 一元二次函数、方程和不等式 Word版含解析