高考数学解题思想:分类讨论思想
高考数学复习是有规律有内部联系的复习过程,在所有题型中一直串联着数学思想在里面,而不是单独的进行题海战术,做会一道题,完全掌握解题思维好于单独做100道题。
数学网高考频道整理高考数学蕴含的六大数学思想,大题无外乎就这几类,吃透规律事半功倍。
高考数学解题思想:分类讨论思想
在解答某些数学问题时,我们常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。分类讨论是一种逻辑方法,是一种重要的数学思想,也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。在分类讨论解题时,要做到标准统一,不重不漏。
例7 解关于x的不等式■1(a≠1)。
分析:将不等式化为■0,要写出不等式的解集,必须a与1的大小关系以及方程(a-1)x+(2-a)=0的根与2的大小关系,要确定它们的大小关系,只能对a的取值进行分类讨论。
解:原不等式可化为■0,
(1)当a1时,原不等式化为■0,由于■-2=■0,所以■2,
所以原不等式的解集为(-∞,■)∪(2,+∞);
(2)当a1时,原不等式可化为■0,由于■-2=■,
若a0,■2,原不等式解集为(■,2);
若a=0时,■=2,解集为Φ;
若0
【高考数学解题思想:分类讨论思想】相关文章:
- 上一篇:高考数学解题思想:极限思想解题步骤
- 下一篇:高考数学知识点:立体几何记忆口诀
精美图文
精品推荐
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:二次根式的概念和性质@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的整数根@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的应用@_@课后练习二(含详解
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的判别式@_@课后练习二(含详
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习二(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形的应用@_@课后练习一(含详解共
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:相似三角形有关的综合问题2@_@课后练习二
- 【北京特级教师同步复习精讲辅导】2014~2015学年华师大版九年级数学下册课后练习:一元二次方程的公共根@_@课后练习一(含详
- 61、2020同步人A数学必修第一册新教材章末综合测评(五) 三角函数 Word版含解析
- 58、2020同步人A数学必修第一册新教材章末综合测评(二) 一元二次函数、方程和不等式 Word版含解析
- 冀教版小学数学二年级下册第二单元《租船问题》
- 苏教版二年级下册数学《认识东、南、西、北》
- 019秋全套小学单元测试六年级上语文数学英语科学全套 6年级上册部编版同步训练期中期末试卷考试题複习题练习簿习题
- 北师大版数学七上-2.1《有理数》课堂教学视频实录-王燕丽
- 《行程问题练习课》小学数学大赛优质课视频一等奖教学视频及报告-顾亚龙
- 《钉子板上的多边形》小学数学名师优质课观摩视频-特级教师翟运胜经典课例
- 君晓天云【顺丰江苏适用】2019秋全新 亮点给力大试卷二年级上册 语文人教版+数学苏教版 2年级上试卷 两本 小学生单元期中期末综合测试卷
- 苏科版数学八年级下册9.2《中心对称和中心对称图形》
- 二年级下册数学第一课
- 小升初试卷模拟卷试题人教版 小升初真题卷语文数学英语全套3本 小学生毕业总複习资料 小升初模拟卷 六年级小升初试卷真题